\begin{tabbing} $\forall$${\it es}$:ES, $P$:(E$\rightarrow\mathbb{B}$), $e$:E. \\[0ex](($\uparrow$($e$ $\in_{b}$ es{-}local{-}le{-}pred\{i:l\}(${\it es}$;$P$))) $\Leftarrow\!\Rightarrow$ ($\exists$$a$:E. ($a$ $\leq$loc $e$ \& ($\uparrow$($P$($a$)))))) \\[0ex]\& (\=($\uparrow$($e$ $\in_{b}$ es{-}local{-}le{-}pred\{i:l\}(${\it es}$;$P$)))\+ \\[0ex]$\Rightarrow$ \=(es{-}local{-}le{-}pred\{i:l\}(${\it es}$;$P$)($e$) $\leq$loc $e$ \+ \\[0ex]\& ($\uparrow$($P$(es{-}local{-}le{-}pred\{i:l\}(${\it es}$;$P$)($e$)))) \\[0ex]\& (\=$\forall$${\it e''}$:E.\+ \\[0ex]${\it e''}$ $\leq$loc $e$ $\Rightarrow$ (es{-}local{-}le{-}pred\{i:l\}(${\it es}$;$P$)($e$) $<$loc ${\it e''}$) $\Rightarrow$ ($\neg$($\uparrow$($P$(${\it e''}$))))))) \-\-\- \end{tabbing}